Resources Saving Quarter Bedburg-Kaster one of three projects out of 'Reallabor' Smart Quart

Green, local, digital = quarter-concept of Bedburg-Kaster: Proven as a role-model? Dr. Arndt Brauckmann E.ON Energy Solutions GmbH

lea workshop: technologies & innovations for climate neutral cities 12. & 13.5.2025 Bundesministerium für Wirtschaft und Klimaschutz

Aufgrund eines Beschlusses des Deutschen Bundestages

Projektpartner: **€-071 gridX Hydrogenious™ vie≦mann** Assoziierte Partner: **(H2MOBILITY**

Stadt Stadt State

Resources Saving **Quarter Bedburg-Kaster** – a holistic approach:

I. A decarbonised, sectorcoupling & local-power focussed energy supply concept with charm

II. Full real-time & bi-directional digitalisation of the energy system

III. A cradle-2-grave-approach to measure the CO₂-pollution of every building in the quarter

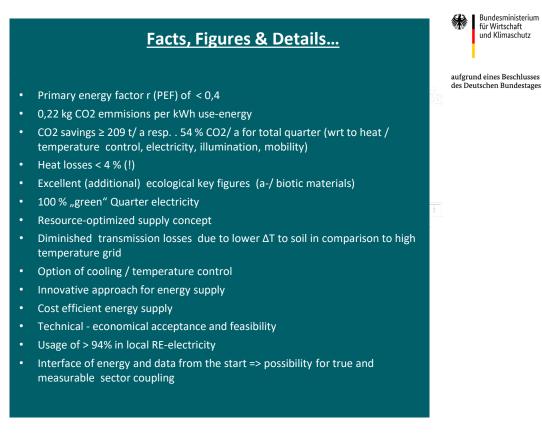
IV. Summary CO₂ minimization concept quarter Bedburg-Kaster

V. Final learnings from 'Real-Labor' funded project Bedburg-Kaster

Gefördert durch:

Bundesministerium für Wirtschaft und Klimaschutz

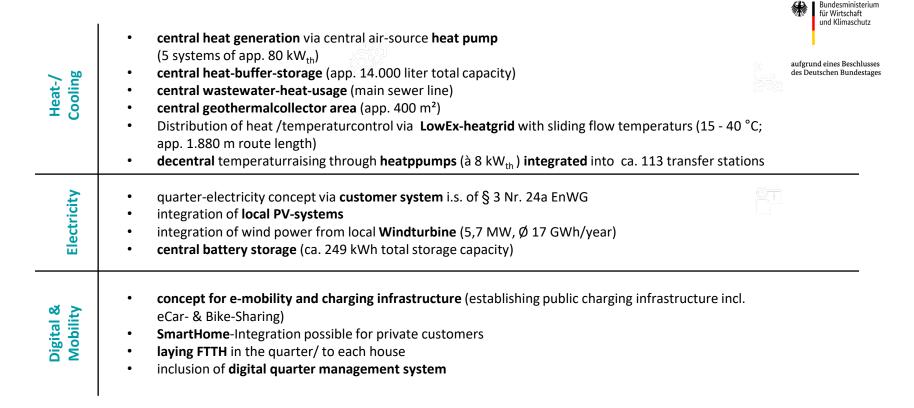
aufgrund eines Beschlusses des Deutschen Bundestages


I. A decarbonised, sectorcoupling & local-power focussed energy supply concept with charm

Development (since 2022) of app 130 housing units

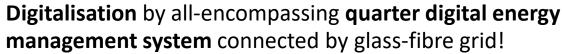
- 5,2 ha
- 18 single detached houses
- 38 duplex houses
- 48 terraced houses
- 5 blocks of flats
- 1 Annex Forest Kindergarten
- → of this 105 houses marketed
- over 80 owners moved in already
- certified acc. to faktor X-priniclples with lifetime CO2-footprint for whole quarter

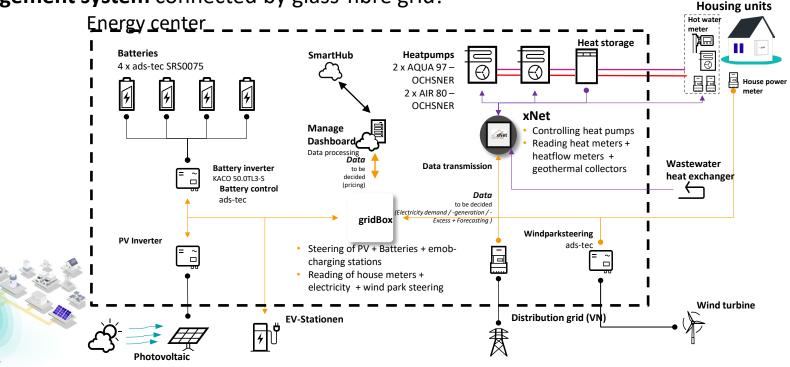
CO₂-Footprint


	Primär- energie	CO ₂	Abiotische Pobstoffe
Bedburger Modell (kalte Nahwärme)	100%	100%	100%
Stromdirekt- heizung im Bedburger Modell	115%	178%	214%
Erdgas Brennwerttherme	716%	890%	61%

westenergie

Gefördert durch:


...and it's smart technical concept!

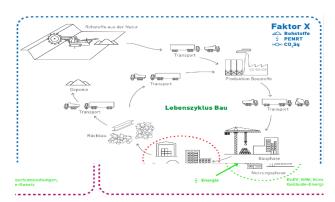


westenergie

Gefördert durch:

II. Full real-time & bi-directional digitalisation

westenergie


III. The grave-2-cradle-approach monitored by

westenergie

Factor-X Calculation: Role-Model for Assessing new builds?

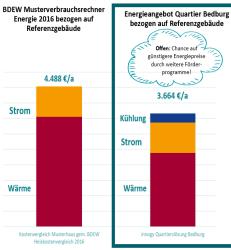
Buidling:

Simply Number Houses x Factor X! What is Factor X? \rightarrow <u>true</u> climate and resource protection, i.e. for the entire life cycle of a house (50 years), a Factor x house needs 1/x in energy, CO₂ and non-renewable raw materials (e. g. 50% less than required / standard)

Berechnung

- bezogen auf eine Lebenszeit von 50 Jahren

Gesamtergebnis des Hauses


Referenzhaus: Testhaus Bedburg

Legende: 😳 Faktor 2 erreicht | 🙁 Faktor 2 nicht erreicht

Ohne Energieverbrauch	Gewicht [kg]	PENRT [kWh]	<i>GWP</i> [kg CO ₍₂₎ -Äq.]	<i>RI A</i> [kg]	<i>RI B</i> [kg]
Mein Haus (absolut)	208.390,60	141.087,81	-1.533,68	297.856,31	112.070,51
Mein Haus (pro m ² beheizte Wohnfläche)	1.776,56	1.202,79	-13,07	2.539,27	955,42
Referenzhaus (pro m ² beheizte Wohnfläche)	2.511,32	1.454,47	534,79	4.591,70	13,49
Vergleich Mein Haus - Referenzhaus		🛞 1.2	🙁 -40.9	🙁 1.8	-70.8
<u>Mit</u> Energieverbrauch	Gewicht [kg]	PENRT [kWh]	GWP [kg CO ₍₂₎ -Äq.]	<i>RI A</i> [kg]	<i>RI B</i> [kg]
Mein Haus (absolut)	208.390,60	192.560,32	7.703,26	378.300,95	112.070,51
Mein Haus (pro m ² beheizte Wohnfläche)	1.776,56	1.641,61	65,67	3.225,07	955,42
Referenzhaus (pro m ² beheizte Wohnfläche)	2.511,32	2.811,08	1.147,44	6.780,40	52,45

Final results = high spendings & low CO₂ savings? NO!

Referenzgebäude

Grundstücksfläche:	300 qm
Wohnfläche:	130 qm
Anschlusswert Wärme:	6 kW
Jahresverbrauch Wärme:	6.150 kWh/a
Kühlungsbedarf:	2.500 kWh/a
Strombedarf:	3.000 kWh/a
Baukostenzuschuss	grds in Baukosten enthalten

Unterstellt: Strom-Anbindung Windkraftanlage in Kundenanlage

Building cost acc. Expectations / experiences so far::

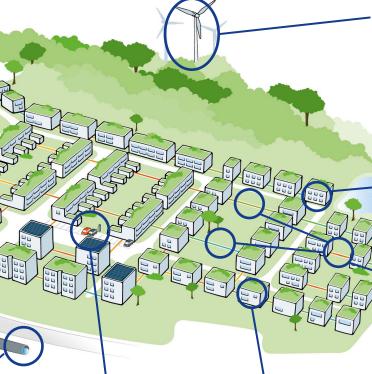
- Factor-x-rated buildings are generally not/hardly more expensive than conventionally built houses
- Critical for total building costs are finishing trades and selected standard of equipment
- climate- and resource-saving development and efficiency increase need not be in opposition (first non-binding marketing conversations of factor-x rated houses don't show any buyer restraints, evidence over the next months!)

CO, savings in the Quarter through energy concept with sector coupling: 209 t CO₂ / a (compared to electrity mix D : 0,254 kg CO_2 /kWh), of this heat: 84.46 t/a: housing: 114,30 t/a; illumination: 2,54 t/a; mobility: 6,35 t/a or alternatively: Each family drives 6.700 km by car/ a less!

IV. Summary CO₂ minimization concept Bedburg-Kaster:

westenergie

life-time assessment buildings


 50% CO2 minimization re building, operation, and dismantling of buildings vs. defined reference building (grave-2-cradleapproach)

Heat source

 geothermal collector area

Energy Center

- battery storage
- transformer
- PV-system
- heat-buffer-storage
- heat pumps
- warm water storage
- digital Qqartermanagement
- fiber optic connection

Main energy source

- wind turbine connected to quarter per direct cable
- supplemented with PV-entry from excess roof PV collectors

decentral heatpump per house

 Enables flexible responses to local temperature needs per house

energy and data distribution

- quarter elctricity grid (customer system)
- Low temperature local heating system
- fiber optic grid

- E-mobility
- charging stations

Heat source

waste water

heat exchanger

energy consumption

 Monitored and steered via smart home systems connected to digital quarter energy steering system

V. Final learnings from 'Real-Labor' funded project Bedburg-Kaster

(as part of ,Real-Labor' SmartQuart):

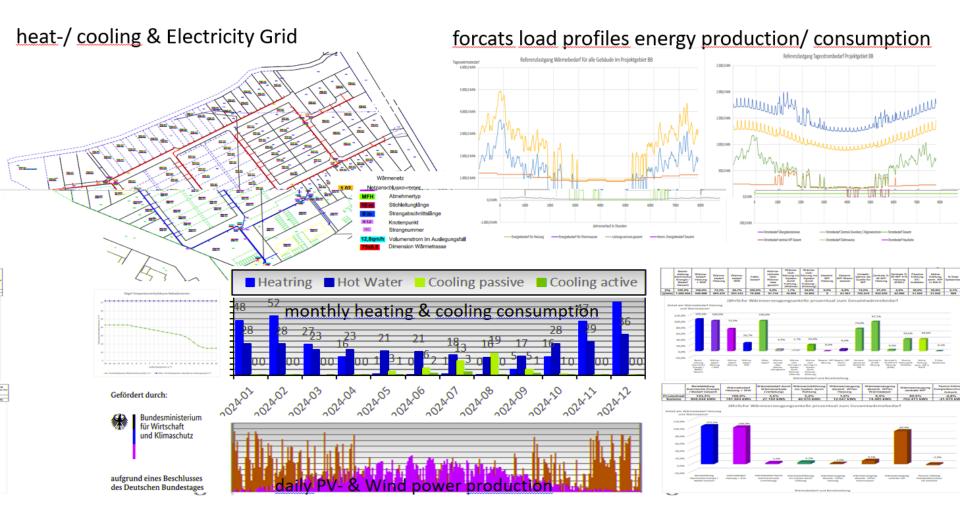
- Key premise: A holistic & local approach is essential for a successful project
- **,Real-Labor' funding & process with PtJ is sufficient**, in addition scaling up by other tools (eg. BEW-funding) to fund rentability gap of future projects apparently feasible
- All stakeholders have to work **hand in hand** from the beginning
- Crucial: A smart & locally focused technical design
- Close interface of energy and data is mandatory
- **Collaboration**/ JV-structure etc. of local stakeholders and energy supplier combines diverse capacities & advantages as well customer trust
- A grave-2-cradle approach is competitive to short term oriented/ classical house building models
- Collected data evidences better energy efficiency rate than planned/ described in literature
- **Results** from similar new built projects can be **transferred** to existing properties to emphasize 'kommunale Wärmewende'

Your contact for smart housing and industrial zones:

One single contact partner

∩ One complete solution

westenergie


Contact details:

E.ON Energy Solutions GmbH Dr. Arndt Brauckmann Freistuhl 7, 44137 Dortmund T +49 231 438 2663 arndt.brauckmann@eon.com

One community Gemeinschaft

Back-up: Details Technical & concept figures Resource Saving Quarter Bedburg-Kaster Westenergie

